Опубликовано AK в Пнд, 29/10/2018 - 12:50
Опубликовано в
Задача №1 (06.02.2020).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №2 (06.02.2020).
Сумма в размере 21000+500N рублей дана в долг на полгода по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №3 (06.02.2020).
Сумма 2 млн руб. внесена в банк 2+N февраля 2016 года и востребована 30-N декабря того же года. Ставка банка составляет 11% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №4 (06.02.2020).
Сумма 750 000 руб. внесена в банк 10+N января 2015 года и востребована 27-N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №5 (06.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 3+N февраля 2008 года была внесена сумма в размере 50000 рублей, а 29-N июля на счет добавлена сумма в 7000 руб., 3+N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №6 (07.02.2020).
Сумма 640 000 руб. внесена в банк 29-N января 2018 года и востребована 7+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №7 (07.02.2020).
При открытии сберегательного счета по ставке 9% годовых, 24-N февраля 2010 года была внесена сумма в размере 50000 рублей, а 2+N июля на счет добавлена сумма в 7000 руб., 27-N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №8 (07.02.2020).
Вклад в сумме 75000 руб. был внесён в банк 25-N февраля не високосного года по ставке 15% годовых, с 1+N июня банк снизил ставку по вкладам до 14% годовых, 29-N августа повысил до 16% и 15 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №10 (13.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 17-N февраля 2008 года была внесена сумма в размере 50000 рублей, а 5+N июля на счет добавлена сумма в 7000 руб., 17-N сентября снята со счета сумма в 7500 руб., а 20 октября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует английскую практику.
Задача №11 (13.02.2020).
Сумма 123 000 руб. внесена в банк 6+N марта 2019 года и востребована 19-N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №12 (13.02.2020).
Вклад в сумме 33000 руб. был внесён в банк 2+N февраля не високосного года по ставке 15% годовых, 16-N июня банк снизил ставку по вкладам до 14% годовых, 14+N августа повысил до 16% и 15 октября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при французской практике их начисления.
Задача №13 (13.02.2020).
На сколько дней можно дать в долг 100000+5000N рублей, исходя из 25.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №14(13.02.2020).
На сколько дней можно дать в долг 250000+10000N рублей, исходя из 26.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №15 (13.02.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-1500N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №16 (13.02.2020).
В контракте предусматривается погашение обязательств через 150 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-1500N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №17 (13.02.2020).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №18 (13.02.2020).
Сумма в размере 21000+500N рублей дана в долг на полгода по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №19 (14.02.2020).
На сколько дней можно дать в долг 76000+5000N рублей, исходя из 25.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №20 (14.02.2020).
В контракте предусматривается погашение обязательств через 270 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-15000N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №21 (14.02.2020).
Сумма в размере 21000+500N рублей дана в долг на 8 лет по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №22 (14.02.2020).
Сумма в размере 4 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно.
Задача №23 (14.02.2020).
Сумма в размере 345 254 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №24 (20.02.2020).
На сколько дней можно дать в долг 330 000+7000N рублей, исходя из 10.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №25 (20.02.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 470 000 рублей, при первоначальной сумме долга 450 000-2700N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №26 (20.02.2020).
Сумма в размере 600 000 рублей дана в долг на 9 лет по схеме сложного процента под 13+0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно.
Задача №27 (20.02.2020).
Сумма 123 000 руб. внесена в банк 28-N марта 2019 года и востребована 3+N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №28 (20.02.2020).
Компания получила кредит в банке на сумму 7 500 000+100 000N рублей сроком на 7 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-го года предусмотрена надбавка к процентной ставке в размере 1,5%, для 3-го и 4-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №29 (20.02.2020).
Компания получила кредит в банке на сумму 3 500 000 -100 000N рублей сроком на 12 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-5го годов предусмотрена надбавка к процентной ставке в размере 1,5%, для 6-го - 8-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №30 (20.02.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №31 (20.02.2020).
Сумма в размере 1 700 000 рублей дана в долг на 5 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №32 (21.02.2020).
Сумма 2 млн руб. внесена в банк 14+N января 2016 года и востребована 5+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №33 (21.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 17-N февраля 2008 года была внесена сумма в размере 47000 рублей, а 6+N июля на счет добавлена сумма в 6000 руб., 17-N сентября снята со счета сумма в 7500 руб., а 15 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №34 (21.02.2020).
Вклад в сумме 67000 руб. был внесён в банк 21-N февраля не високосного года по ставке 15% годовых, с 5+N июня банк снизил ставку по вкладам до 14% годовых, 19-N августа повысил до 16% и 15 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №35 (21.02.2020).
Сумма в размере 17000+970N рублей дана в долг на 5 лет по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №36 (21.02.2020).
На сколько дней можно дать в долг 100000+5000N рублей, исходя из 17.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №37 (27.02.2020).
Сумма в размере 3 300 000 рублей дана в долг на 9 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №38 (27.02.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №39 (27.02.2020).
Сумма в размере 47 300 000 рублей дана в долг на 12 лет по схеме сложного процента под 13+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №40 (27.02.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №41 (27.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 12+0.1N%?
Задача №42 (27.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 12-0.1N%?
Задача №43 (27.02.2020).
Решено консолидировать два платежа со сроками 20-N.04 и 10+N.05 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 31.05. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №44 (27.02.2020).
Решено консолидировать два платежа со сроками 4+N.04 и 28-N.05 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 27.07. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №45 (28.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 14+0.2N%?
Задача №46 (28.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 14-0.2N%?
Задача №47 (28.02.2020).
Решено консолидировать два платежа со сроками 17-N.03 и 28-N.04 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 26.08. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №48 (28.02.2020).
Решено консолидировать два платежа со сроками 4+N.02 и 28-N.04 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 27.06. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №49 (28.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 24-N февраля 2008 года была внесена сумма в размере 47000 рублей, а 7+N июля на счет добавлена сумма в 6000 руб., 24-N сентября снята со счета сумма в 7500 руб., а 15 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует британскую практику.
Задача №50 (28.02.2020).
Компания получила кредит в банке на сумму 3 500 000 -100 000N рублей сроком на 12 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-5го годов предусмотрена надбавка к процентной ставке в размере 1,5%, для 6-го - 8-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №51(28.02.2020).
Сумма 123 000 руб. внесена в банк 28-N марта 2019 года и востребована 3+N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №52 (05.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 - 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №53 (05.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.1N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №54 (05.03.2020).
Вексель выдан на 450 000 руб. с уплатой 26-N ноября, а владелец учел его в банке 2+N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №55 (05.03.2020).
Решено консолидировать два платежа со сроками 12+N.05 и 29-N.06 и суммами платежа 54 тыс. руб. и 72 тыс. руб. Срок консолидации платежей 15.08. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 18-0.3N% годовых.
Задача №56 (05.03.2020).
Предлагается платеж в 370 000 - 6 000N руб. со сроком уплаты через 4 года заменить платежом со сроком уплаты через 7 лет. Найти новую сумму платежа, исходя из процентной ставки 21 % годовых.
Задача №57 (12.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 + 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №58 (12.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.2N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №59 (12.03.2020).
Вексель выдан на 450 000 руб. с уплатой 6+N ноября, а владелец учел его в банке 27-N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №60 (12.03.2020).
Решено консолидировать два платежа со сроками 12+N.05 и 29-N.07 и суммами платежа 54 тыс. руб. и 72 тыс. руб. Срок консолидации платежей 15.09. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 18-0.3N% годовых.
Задача №61 (12.03.2020).
Предлагается платеж в 370 000 + 6 000N руб. со сроком уплаты через 5 лет заменить платежом со сроком уплаты через 8 лет. Найти новую сумму платежа, исходя из процентной ставки 19 % годовых.
Задача №62 (13.03.2020).
Сумма в размере 47 300 000 рублей дана в долг на 12 лет по схеме сложного процента под 13+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №63 (13.03.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №64 (13.03.2020).
Сумма в размере 6 470 000 рублей дана в долг на 17 лет по схеме сложного процента под 15+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №65 (13.03.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №66 (13.03.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №67 (13.03.2020).
Вклад в сумме 33000 руб. был внесён в банк 25-N февраля не високосного года по ставке 6.57% годовых, с 1+N июля банк снизил ставку по вкладам до 6.4% годовых, 25-N августа повысил до 7.2% и 15 октября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №68 (13.03.2020).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №69 (13.03.2020).
Сумма в размере 21000 рублей дана в долг на 4 года+N месяцев по схеме сложного процента под 10% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №70 (19.03.2020).
Решено консолидировать два платежа со сроками 2+N.05 и 10+N.06 и суммами платежа 34 тыс. руб. и 77 тыс. руб. Срок консолидации платежей 25.08. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 15-0.3N% годовых.
Задача №71 (19.03.2020).
Предлагается платеж в 450 000 - 6 000N руб. со сроком уплаты через 3 года заменить платежом со сроком уплаты через 5 лет. Найти новую сумму платежа, исходя из процентной ставки 19 % годовых.
Задача №72 (19.03.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым, ежеквартальным, ежемесячным и ежедневным начислением процентов, если соответствующая им эффективная ставка должна быть равна 18.2-0.1N%?
Задача №73 (19.03.2020).
На сколько дней можно дать в долг 70000+1500N рублей, исходя из 19.4% годовых, если возвращенная сумма будет составлять 120000 рублей (обычные и точные проценты)?
Задача №74 (19.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 - 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №75 (19.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.1N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №76 (19.03.2020).
Вексель выдан на 450 000 руб. с уплатой 26-N ноября, а владелец учел его в банке 2+N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №77 (19.03.2020).
Вклад в сумме 75000 руб. был внесён в банк 17-N февраля не високосного года по ставке 15% годовых, с 5+N июня банк снизил ставку по вкладам до 14% годовых, 19-N августа повысил до 16% и 5 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №78 (19.03.2020).
При открытии сберегательного счета по ставке 8.5% годовых, 17-N января 2014 года была внесена сумма в размере 58000 рублей, а 5+N августа на счет добавлена сумма в 13000 руб., 17-N октября снята со счета сумма в 24700 руб., а 10 декабря счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует британскую практику.
Задача №79 (19.03.2020).
Вклад в сумме 47000 руб. был внесён в банк 15-N января 2016 года по ставке 7.% годовых, с 8+N июля банк снизил ставку по вкладам до 6.5% годовых, 19-N сентября повысил до 9.2% и 10 ноября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при французской практике их начисления.
Задача №80 (19.03.2020).
На сколько дней можно дать в долг 160000+5000N рублей, исходя из 15.5% годовых, если возвращенная сумма будет составлять 350000 рублей (обычные и точные проценты)?
Задача №81 (19.03.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 477000 рублей, при первоначальной сумме долга 400000-12900N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №82 (19.03.2020).
На сколько дней можно дать в долг 350000+12000N рублей, исходя из 16.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №83 (19.03.2020).
При открытии сберегательного счета по ставке 7.7% годовых, 27-N января 2008 года была внесена сумма в размере 33000 рублей, а 6+N июля на счет добавлена сумма в 24000 руб., 16-N августа снята со счета сумма в 53200 руб., а 24 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует английскую практику.
Задача №84 (19.03.2020).
В контракте предусматривается погашение обязательств через 120 дней в сумме 430000 рублей, при первоначальной сумме долга 400000-15000N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №85 (20.03.2020).
На счет в банке в течении 11 лет в конце каждого года будут вноситься суммы в размере 15000 руб., на которые будут начисляться проценты по ставке 7.6+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №86 (20.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №87 (20.03.2020).
Для покупки автомобиля через 7 лет потребуется 250 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 7-0.1N%.
Задача №89 (20.03.2020).
Сумма 100000 рублей предоставлена в долг на 7 лет под 16+0.2N% годовых. Определить ежегодную сумму погашения долга.
Задача №90 (20.03.2020).
На счет в банке в течении 9 лет в конце каждого года будут вноситься суммы в размере 47000 руб., на которые будут начисляться проценты по ставке 4.6+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №91 (20.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №92 (20.03.2020).
Для покупки автомобиля через 5 лет потребуется 370 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 9-0.15N%.
Задача №93 (20.03.2020).
Сумма 276000 рублей предоставлена в долг на 5 лет под 18+0.17N% годовых. Определить ежегодную сумму погашения долга.
Задача №94 (26.03.2020).
На счет в банке в течении 9 лет в конце каждого года будут вноситься суммы в размере 35000 руб., на которые будут начисляться проценты по ставке 7.6+0.17N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №95 (26.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №96 (26.03.2020).
Для покупки автомобиля через 6 лет потребуется 330 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 8-0.12N%.
Задача №97 (26.03.2020).
Сумма 144000 рублей предоставлена в долг на 8 лет под 16+0.33N% годовых. Определить ежегодную сумму погашения долга.
Задача №98 (26.03.2020).
На счет в банке в течении 6 лет в конце каждого года будут вноситься суммы в размере 53000 руб., на которые будут начисляться проценты по ставке 5.61+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №99 (26.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №100 (26.03.2020).
Для покупки автомобиля через 4 года потребуется 460 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 10-0.25N%.
Задача №101 (26.03.2020).
Сумма 276000 рублей предоставлена в долг на 8 лет под 17+0.16N% годовых. Определить ежегодную сумму погашения долга.
Задача №102 (09.04.2020).
Сумма 2 млн руб. внесена в банк 2+N февраля 2016 года и востребована 30-N декабря того же года. Ставка банка составляет 11% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №103 (09.04.2020).
Сумма 750 000 руб. внесена в банк 10+N января 2015 года и востребована 27-N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №104 (09.04.2020).
При открытии сберегательного счета по ставке 11% годовых, 3+N февраля 2008 года была внесена сумма в размере 50000 рублей, а 29-N июля на счет добавлена сумма в 7000 руб., 3+N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №105 (09.04.2020).
Сумма 640 000 руб. внесена в банк 29-N января 2018 года и востребована 7+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №106 (09.04.2020).
При открытии сберегательного счета по ставке 9% годовых, 24-N февраля 2010 года была внесена сумма в размере 50000 рублей, а 2+N июля на счет добавлена сумма в 7000 руб., 27-N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №107 (16.04.2020).
На сколько дней можно дать в долг 340000+10000N рублей, исходя из 14.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №108 (16.04.2020).
Сумма в размере 11 270 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №109 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №110 (16.04.2020).
Сумма в размере 2 67 000 рублей дана в долг на 8 лет по схеме сложного процента под 12-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №111 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №112 (16.04.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 8 лет по схеме сложного процента под 10-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №113 (16.04.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 6 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №114 (16.04.2020).
Сумма в размере 1 700 000 рублей дана в долг на 5 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №115 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов (кроме непрерывного начисления).
Задача №116 (16.04.2020).
Сумма в размере 4 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 19-0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828459045).
Задача №117 (07.05.2020).
Сумма в размере 470 000 000 000 рублей дана в долг на 6 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №118 (07.05.2020).
Сумма в размере 1 700 000 рублей дана в долг на 56 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №119 (07.05.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов (кроме непрерывного начисления).
Задача №120 (07.05.2020).
Сумма в размере 4 700 000 рублей дана в долг на 8 лет по схеме сложного процента под 19-0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828459045).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №2 (06.02.2020).
Сумма в размере 21000+500N рублей дана в долг на полгода по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №3 (06.02.2020).
Сумма 2 млн руб. внесена в банк 2+N февраля 2016 года и востребована 30-N декабря того же года. Ставка банка составляет 11% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №4 (06.02.2020).
Сумма 750 000 руб. внесена в банк 10+N января 2015 года и востребована 27-N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №5 (06.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 3+N февраля 2008 года была внесена сумма в размере 50000 рублей, а 29-N июля на счет добавлена сумма в 7000 руб., 3+N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №6 (07.02.2020).
Сумма 640 000 руб. внесена в банк 29-N января 2018 года и востребована 7+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №7 (07.02.2020).
При открытии сберегательного счета по ставке 9% годовых, 24-N февраля 2010 года была внесена сумма в размере 50000 рублей, а 2+N июля на счет добавлена сумма в 7000 руб., 27-N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №8 (07.02.2020).
Вклад в сумме 75000 руб. был внесён в банк 25-N февраля не високосного года по ставке 15% годовых, с 1+N июня банк снизил ставку по вкладам до 14% годовых, 29-N августа повысил до 16% и 15 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №10 (13.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 17-N февраля 2008 года была внесена сумма в размере 50000 рублей, а 5+N июля на счет добавлена сумма в 7000 руб., 17-N сентября снята со счета сумма в 7500 руб., а 20 октября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует английскую практику.
Задача №11 (13.02.2020).
Сумма 123 000 руб. внесена в банк 6+N марта 2019 года и востребована 19-N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №12 (13.02.2020).
Вклад в сумме 33000 руб. был внесён в банк 2+N февраля не високосного года по ставке 15% годовых, 16-N июня банк снизил ставку по вкладам до 14% годовых, 14+N августа повысил до 16% и 15 октября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при французской практике их начисления.
Задача №13 (13.02.2020).
На сколько дней можно дать в долг 100000+5000N рублей, исходя из 25.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №14(13.02.2020).
На сколько дней можно дать в долг 250000+10000N рублей, исходя из 26.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №15 (13.02.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-1500N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №16 (13.02.2020).
В контракте предусматривается погашение обязательств через 150 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-1500N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №17 (13.02.2020).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №18 (13.02.2020).
Сумма в размере 21000+500N рублей дана в долг на полгода по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №19 (14.02.2020).
На сколько дней можно дать в долг 76000+5000N рублей, исходя из 25.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №20 (14.02.2020).
В контракте предусматривается погашение обязательств через 270 дней в сумме 550000 рублей, при первоначальной сумме долга 400000-15000N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №21 (14.02.2020).
Сумма в размере 21000+500N рублей дана в долг на 8 лет по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №22 (14.02.2020).
Сумма в размере 4 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно.
Задача №23 (14.02.2020).
Сумма в размере 345 254 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №24 (20.02.2020).
На сколько дней можно дать в долг 330 000+7000N рублей, исходя из 10.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №25 (20.02.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 470 000 рублей, при первоначальной сумме долга 450 000-2700N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №26 (20.02.2020).
Сумма в размере 600 000 рублей дана в долг на 9 лет по схеме сложного процента под 13+0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно.
Задача №27 (20.02.2020).
Сумма 123 000 руб. внесена в банк 28-N марта 2019 года и востребована 3+N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №28 (20.02.2020).
Компания получила кредит в банке на сумму 7 500 000+100 000N рублей сроком на 7 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-го года предусмотрена надбавка к процентной ставке в размере 1,5%, для 3-го и 4-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №29 (20.02.2020).
Компания получила кредит в банке на сумму 3 500 000 -100 000N рублей сроком на 12 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-5го годов предусмотрена надбавка к процентной ставке в размере 1,5%, для 6-го - 8-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №30 (20.02.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №31 (20.02.2020).
Сумма в размере 1 700 000 рублей дана в долг на 5 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №32 (21.02.2020).
Сумма 2 млн руб. внесена в банк 14+N января 2016 года и востребована 5+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №33 (21.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 17-N февраля 2008 года была внесена сумма в размере 47000 рублей, а 6+N июля на счет добавлена сумма в 6000 руб., 17-N сентября снята со счета сумма в 7500 руб., а 15 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №34 (21.02.2020).
Вклад в сумме 67000 руб. был внесён в банк 21-N февраля не високосного года по ставке 15% годовых, с 5+N июня банк снизил ставку по вкладам до 14% годовых, 19-N августа повысил до 16% и 15 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №35 (21.02.2020).
Сумма в размере 17000+970N рублей дана в долг на 5 лет по схеме простого процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №36 (21.02.2020).
На сколько дней можно дать в долг 100000+5000N рублей, исходя из 17.5% годовых, если возвращенная сумма будет составлять 250000 рублей (обычные и точные проценты)?
Задача №37 (27.02.2020).
Сумма в размере 3 300 000 рублей дана в долг на 9 лет по схеме сложного процента под 17+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №38 (27.02.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №39 (27.02.2020).
Сумма в размере 47 300 000 рублей дана в долг на 12 лет по схеме сложного процента под 13+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №40 (27.02.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №41 (27.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 12+0.1N%?
Задача №42 (27.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 12-0.1N%?
Задача №43 (27.02.2020).
Решено консолидировать два платежа со сроками 20-N.04 и 10+N.05 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 31.05. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №44 (27.02.2020).
Решено консолидировать два платежа со сроками 4+N.04 и 28-N.05 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 27.07. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №45 (28.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 14+0.2N%?
Задача №46 (28.02.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым начислением процентов и ежемесячным начислением процентов, если соответствующая им эффективная ставка должна быть равна 14-0.2N%?
Задача №47 (28.02.2020).
Решено консолидировать два платежа со сроками 17-N.03 и 28-N.04 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 26.08. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №48 (28.02.2020).
Решено консолидировать два платежа со сроками 4+N.02 и 28-N.04 и суммами платежа 20 000 руб. и 30 000 руб. Срок консолидации платежей 27.06. Определить сумму консолидированного платежа при условии, что ставка равна 10% годовых.
Задача №49 (28.02.2020).
При открытии сберегательного счета по ставке 11% годовых, 24-N февраля 2008 года была внесена сумма в размере 47000 рублей, а 7+N июля на счет добавлена сумма в 6000 руб., 24-N сентября снята со счета сумма в 7500 руб., а 15 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует британскую практику.
Задача №50 (28.02.2020).
Компания получила кредит в банке на сумму 3 500 000 -100 000N рублей сроком на 12 лет. Процентная ставка по кредиту определена в 10% для 1-го года, для 2-5го годов предусмотрена надбавка к процентной ставке в размере 1,5%, для 6-го - 8-го годов - дополнительная надбавка 2%, для последующих лет 1%. Определить сумму долга, подлежащую погашению в конце срока займа.
Задача №51(28.02.2020).
Сумма 123 000 руб. внесена в банк 28-N марта 2019 года и востребована 3+N сентября того же года. Ставка банка составляет 7% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №52 (05.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 - 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №53 (05.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.1N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №54 (05.03.2020).
Вексель выдан на 450 000 руб. с уплатой 26-N ноября, а владелец учел его в банке 2+N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №55 (05.03.2020).
Решено консолидировать два платежа со сроками 12+N.05 и 29-N.06 и суммами платежа 54 тыс. руб. и 72 тыс. руб. Срок консолидации платежей 15.08. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 18-0.3N% годовых.
Задача №56 (05.03.2020).
Предлагается платеж в 370 000 - 6 000N руб. со сроком уплаты через 4 года заменить платежом со сроком уплаты через 7 лет. Найти новую сумму платежа, исходя из процентной ставки 21 % годовых.
Задача №57 (12.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 + 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №58 (12.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.2N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №59 (12.03.2020).
Вексель выдан на 450 000 руб. с уплатой 6+N ноября, а владелец учел его в банке 27-N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №60 (12.03.2020).
Решено консолидировать два платежа со сроками 12+N.05 и 29-N.07 и суммами платежа 54 тыс. руб. и 72 тыс. руб. Срок консолидации платежей 15.09. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 18-0.3N% годовых.
Задача №61 (12.03.2020).
Предлагается платеж в 370 000 + 6 000N руб. со сроком уплаты через 5 лет заменить платежом со сроком уплаты через 8 лет. Найти новую сумму платежа, исходя из процентной ставки 19 % годовых.
Задача №62 (13.03.2020).
Сумма в размере 47 300 000 рублей дана в долг на 12 лет по схеме сложного процента под 13+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №63 (13.03.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №64 (13.03.2020).
Сумма в размере 6 470 000 рублей дана в долг на 17 лет по схеме сложного процента под 15+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №65 (13.03.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №66 (13.03.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №67 (13.03.2020).
Вклад в сумме 33000 руб. был внесён в банк 25-N февраля не високосного года по ставке 6.57% годовых, с 1+N июля банк снизил ставку по вкладам до 6.4% годовых, 25-N августа повысил до 7.2% и 15 октября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №68 (13.03.2020).
Сумма в размере 21000+500N рублей дана в долг на 4 года по схеме сложного процента под 10+N% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №69 (13.03.2020).
Сумма в размере 21000 рублей дана в долг на 4 года+N месяцев по схеме сложного процента под 10% годовых. Определить проценты (I) и сумму (FV), подлежащую возврату.
Задача №70 (19.03.2020).
Решено консолидировать два платежа со сроками 2+N.05 и 10+N.06 и суммами платежа 34 тыс. руб. и 77 тыс. руб. Срок консолидации платежей 25.08. Определить t1, t2 и сумму консолидированного платежа при условии, что ставка равна 15-0.3N% годовых.
Задача №71 (19.03.2020).
Предлагается платеж в 450 000 - 6 000N руб. со сроком уплаты через 3 года заменить платежом со сроком уплаты через 5 лет. Найти новую сумму платежа, исходя из процентной ставки 19 % годовых.
Задача №72 (19.03.2020).
Каковы будут эквивалентные номинальные процентные ставки с полугодовым, ежеквартальным, ежемесячным и ежедневным начислением процентов, если соответствующая им эффективная ставка должна быть равна 18.2-0.1N%?
Задача №73 (19.03.2020).
На сколько дней можно дать в долг 70000+1500N рублей, исходя из 19.4% годовых, если возвращенная сумма будет составлять 120000 рублей (обычные и точные проценты)?
Задача №74 (19.03.2020).
Через 150 дней с момента подписания контракта необходимо уплатить 310 000 - 10 000N руб., исходя из 15% годовых и временной базы 360 дней. Определить первоначальную сумму долга.
Задача №75 (19.03.2020).
Через 3 года компании потребуется деньги в размере 7 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 10-0.1N% годовых, чтобы через 3 года получить требуемую сумму?
Задача №76 (19.03.2020).
Вексель выдан на 450 000 руб. с уплатой 26-N ноября, а владелец учел его в банке 2+N августа по учетной ставке 16%. Определить t1, сумму, полученную предъявителем векселя и доход банка при реализации дисконта.
Задача №77 (19.03.2020).
Вклад в сумме 75000 руб. был внесён в банк 17-N февраля не високосного года по ставке 15% годовых, с 5+N июня банк снизил ставку по вкладам до 14% годовых, 19-N августа повысил до 16% и 5 декабря вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при английской практике их начисления.
Задача №78 (19.03.2020).
При открытии сберегательного счета по ставке 8.5% годовых, 17-N января 2014 года была внесена сумма в размере 58000 рублей, а 5+N августа на счет добавлена сумма в 13000 руб., 17-N октября снята со счета сумма в 24700 руб., а 10 декабря счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует британскую практику.
Задача №79 (19.03.2020).
Вклад в сумме 47000 руб. был внесён в банк 15-N января 2016 года по ставке 7.% годовых, с 8+N июля банк снизил ставку по вкладам до 6.5% годовых, 19-N сентября повысил до 9.2% и 10 ноября вклад был востребован. Определить t1,t2,t3 и сумму начисленных процентов при французской практике их начисления.
Задача №80 (19.03.2020).
На сколько дней можно дать в долг 160000+5000N рублей, исходя из 15.5% годовых, если возвращенная сумма будет составлять 350000 рублей (обычные и точные проценты)?
Задача №81 (19.03.2020).
В контракте предусматривается погашение обязательств через 90 дней в сумме 477000 рублей, при первоначальной сумме долга 400000-12900N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №82 (19.03.2020).
На сколько дней можно дать в долг 350000+12000N рублей, исходя из 16.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №83 (19.03.2020).
При открытии сберегательного счета по ставке 7.7% годовых, 27-N января 2008 года была внесена сумма в размере 33000 рублей, а 6+N июля на счет добавлена сумма в 24000 руб., 16-N августа снята со счета сумма в 53200 руб., а 24 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует английскую практику.
Задача №84 (19.03.2020).
В контракте предусматривается погашение обязательств через 120 дней в сумме 430000 рублей, при первоначальной сумме долга 400000-15000N рублей. Определить доходность операции для кредитора в виде процентной ставки (обыкновенные и точные проценты, два знака после запятой).
Задача №85 (20.03.2020).
На счет в банке в течении 11 лет в конце каждого года будут вноситься суммы в размере 15000 руб., на которые будут начисляться проценты по ставке 7.6+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №86 (20.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №87 (20.03.2020).
Для покупки автомобиля через 7 лет потребуется 250 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 7-0.1N%.
Задача №89 (20.03.2020).
Сумма 100000 рублей предоставлена в долг на 7 лет под 16+0.2N% годовых. Определить ежегодную сумму погашения долга.
Задача №90 (20.03.2020).
На счет в банке в течении 9 лет в конце каждого года будут вноситься суммы в размере 47000 руб., на которые будут начисляться проценты по ставке 4.6+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №91 (20.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №92 (20.03.2020).
Для покупки автомобиля через 5 лет потребуется 370 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 9-0.15N%.
Задача №93 (20.03.2020).
Сумма 276000 рублей предоставлена в долг на 5 лет под 18+0.17N% годовых. Определить ежегодную сумму погашения долга.
Задача №94 (26.03.2020).
На счет в банке в течении 9 лет в конце каждого года будут вноситься суммы в размере 35000 руб., на которые будут начисляться проценты по ставке 7.6+0.17N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №95 (26.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №96 (26.03.2020).
Для покупки автомобиля через 6 лет потребуется 330 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 8-0.12N%.
Задача №97 (26.03.2020).
Сумма 144000 рублей предоставлена в долг на 8 лет под 16+0.33N% годовых. Определить ежегодную сумму погашения долга.
Задача №98 (26.03.2020).
На счет в банке в течении 6 лет в конце каждого года будут вноситься суммы в размере 53000 руб., на которые будут начисляться проценты по ставке 5.61+0.1N%. Определить сумму процентов, которую банк выплатит владельцу счета.
Задача №99 (26.03.2020).
Рассмотрим предыдущую задачу, изменив условия, проценты начисляются:
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно.
Задача №100 (26.03.2020).
Для покупки автомобиля через 4 года потребуется 460 тыс. руб. Определите размер ежегодных взносов, вносимых в конце каждого года в банк, который начисляет проценты по ставке 10-0.25N%.
Задача №101 (26.03.2020).
Сумма 276000 рублей предоставлена в долг на 8 лет под 17+0.16N% годовых. Определить ежегодную сумму погашения долга.
Задача №102 (09.04.2020).
Сумма 2 млн руб. внесена в банк 2+N февраля 2016 года и востребована 30-N декабря того же года. Ставка банка составляет 11% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №103 (09.04.2020).
Сумма 750 000 руб. внесена в банк 10+N января 2015 года и востребована 27-N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №104 (09.04.2020).
При открытии сберегательного счета по ставке 11% годовых, 3+N февраля 2008 года была внесена сумма в размере 50000 рублей, а 29-N июля на счет добавлена сумма в 7000 руб., 3+N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №105 (09.04.2020).
Сумма 640 000 руб. внесена в банк 29-N января 2018 года и востребована 7+N декабря того же года. Ставка банка составляет 8% годовых.
Определить t1, t2, сумму начисленных процентов при различной практике их начисления (герм., фр., англ.).
Задача №106 (09.04.2020).
При открытии сберегательного счета по ставке 9% годовых, 24-N февраля 2010 года была внесена сумма в размере 50000 рублей, а 2+N июля на счет добавлена сумма в 7000 руб., 27-N сентября снята со счета сумма в 7500 руб., а 20 ноября счет был закрыт.
Определить t1, t2, t3 и используя процентные числа определить суммы начисленных процентов при условии, что банк использует германскую практику.
Задача №107 (16.04.2020).
На сколько дней можно дать в долг 340000+10000N рублей, исходя из 14.7% годовых, если возвращенная сумма будет составлять 500000 рублей (обычные и точные проценты)?
Задача №108 (16.04.2020).
Сумма в размере 11 270 000 рублей дана в долг на 10 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №109 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №110 (16.04.2020).
Сумма в размере 2 67 000 рублей дана в долг на 8 лет по схеме сложного процента под 12-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №111 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов.
Задача №112 (16.04.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 8 лет по схеме сложного процента под 10-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- по полугодиям;
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждый час;
- каждую минуту;
- каждую секунду.
Задача №113 (16.04.2020).
Сумма в размере 250 000 000 000 рублей дана в долг на 6 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №114 (16.04.2020).
Сумма в размере 1 700 000 рублей дана в долг на 5 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №115 (16.04.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов (кроме непрерывного начисления).
Задача №116 (16.04.2020).
Сумма в размере 4 700 000 рублей дана в долг на 7 лет по схеме сложного процента под 19-0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828459045).
Задача №117 (07.05.2020).
Сумма в размере 470 000 000 000 рублей дана в долг на 6 лет по схеме сложного процента под 13-0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются непрерывно, при значениях величины "e" приблизительно равных:
- 2.7;
- 2.71828;
- 2.718281828;
- 2.718281828459045.
Задача №118 (07.05.2020).
Сумма в размере 1 700 000 рублей дана в долг на 56 лет по схеме сложного процента под 19+0.1N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828).
Задача №119 (07.05.2020).
Рассчитать эффективную ставку для финансовой операции, рассмотренной в предыдущей задаче, для всех указанных вариантов начисления процентов (кроме непрерывного начисления).
Задача №120 (07.05.2020).
Сумма в размере 4 700 000 рублей дана в долг на 8 лет по схеме сложного процента под 19-0.3N% годовых. Определить проценты (I) подлежащую возврату, учитывая что проценты начисляются:
- раз в год
- ежеквартально;
- ежемесячно;
- ежедневно;
- каждую секунду;
- непрерывно ( при величине "e" приблизительно равном 2.718281828459045).
- Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии
Понравился сайт? =)
Нашли что-нибудь интересное? =)
Поддержите! =)
Мы - Вас - не забудем, Веришь.Нет? =)
P.S. И сделаем еще что-нибудь, полезное и нужное... Правда-правда =)))


Недавние комментарии
1 час 55 минут назад
1 час 57 минут назад
1 час 58 минут назад
2 часа 20 секунд назад
17 часов 16 минут назад
17 часов 18 минут назад
17 часов 19 минут назад
17 часов 22 минуты назад
17 часов 33 минуты назад
17 часов 34 минуты назад